Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
4.
Cell Commun Signal ; 20(1): 79, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1875014

RESUMEN

Coronavirus disease (COVID-19) is a viral infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The infection was reported in Wuhan, China, in late December 2019 and has become a major global concern due to severe respiratory infections and high transmission rates. Evidence suggests that the strong interaction between SARS-CoV-2 and patients' immune systems leads to various clinical symptoms of COVID-19. Although the adaptive immune responses are essential for eliminating SARS-CoV-2, the innate immune system may, in some cases, cause the infection to progress. The cytotoxic CD8+ T cells in adaptive immune responses demonstrated functional exhaustion through upregulation of exhaustion markers. In this regard, humoral immune responses play an essential role in combat SARS-CoV-2 because SARS-CoV-2 restricts antigen presentation through downregulation of MHC class I and II molecules that lead to the inhibition of T cell-mediated immune response responses. This review summarizes the exact pathogenesis of SARS-CoV-2 and the alteration of the immune response during SARS-CoV-2 infection. In addition, we've explained the exhaustion of the immune system during SARS-CoV-2 and the potential immunomodulation approach to overcome this phenomenon. Video Abstract.


Asunto(s)
COVID-19 , Inmunidad Innata , Linfocitos T CD8-positivos , China , Humanos , SARS-CoV-2
5.
Int Immunopharmacol ; 100: 108076, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-1375975

RESUMEN

BACKGROUND: Evidence show that Matrix metalloproteinases (MMPs) have been associated with neurological complications in the viral infections. Here in the current investigation, we intended to reveal if MMPs are potentially involved in the development of neurological symptoms in the patients with Coronavirus disease 2019 (COVID-19). METHODS: The levels of MMPs, inflammatory cytokines, chemokines, and adhesion molecules were evaluated in the serum and cerebrospinal fluid (CSF) samples from 10 COVID-19 patients with neurological syndrome (NS) and 10 COVID-19 patients lacking NS. Monocytes from the CSF samples were treated with TNF-α and the secreted levels of MMPs were determined. RESULTS: The frequency of monocytes were increased in the CSF samples of COVID-19 patients with NS compared to patients without NS. Levels of inflammatory cytokines IL-1ß, IL-6, and TNF-α, chemokines CCL2, CCL3, CCL4, CCL7, CCL12, CXCL8, and CX3CL1, MMPs MMP-2, MMP-3, MMP-9, and MMP-12, and adhesion molecules ICAM-1, VCAM-1, and E-selectin were significantly increased in the CSF samples of COVID-19 patients with NS compared with patients without NS. Treatment of CSF-derived monocytes obtained from COVID-19 patients with NS caused increased production of MMP-2, MMP-3, MMP-9, and MMP-12. CONCLUSIONS: Higher levels of inflammatory cytokines might promote the expression of adhesion molecules on blood-CSF barrier (BCSFB), resulting in facilitation of monocyte recruitment. Increased levels of CSF chemokines might also help to the trafficking of monocytes to CSF. Inflammatory cytokines might enhance production of MMPs from monocytes, leading to disruption of BCSFB (and therefore further infiltration of inflammatory cells to CSF) in COVID-19 patients with NS.


Asunto(s)
COVID-19/complicaciones , Metaloproteinasas de la Matriz/fisiología , Enfermedades del Sistema Nervioso/etiología , SARS-CoV-2 , Anciano , Quimiocinas/análisis , Citocinas/análisis , Femenino , Humanos , Molécula 1 de Adhesión Intercelular/análisis , Masculino , Persona de Mediana Edad
6.
Hum Immunol ; 82(10): 733-745, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-1293817

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19 is associated with excessive inflammation, as a main reason for severe condition and death. Increased inflammatory cytokines and humoral response to SARS-CoV-2 correlate with COVID-19 immunity and pathogenesis. Importantly, the levels of pro-inflammatory cytokines that increase profoundly in systemic circulation appear as part of the clinical pictures of two overlapping conditions, sepsis and the hemophagocytic syndromes. Both conditions can develop lethal inflammatory responses that lead to tissue damage, however, in many patients hemophagocytic lymphohistiocytosis (HLH) can be differentiated from sepsis. This is a key issue because the life-saving aggressive immunosuppressive treatment, required in the HLH therapy, is absent in sepsis guidelines. This paper aims to describe the pathophysiology and clinical relevance of these distinct entities in the course of COVID-19 that resemble sepsis and further highlights two effector arms of the humoral immune response (inflammatory cytokine and immunoglobulin production) during COVID-19 infection.


Asunto(s)
COVID-19/inmunología , Inmunidad Humoral/inmunología , Animales , Citocinas/inmunología , Humanos , Inflamación/inmunología , Linfohistiocitosis Hemofagocítica/inmunología , SARS-CoV-2/inmunología , Sepsis/inmunología
7.
IUBMB Life ; 73(8): 1005-1015, 2021 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1291220

RESUMEN

The kidney is one of the main targets attacked by viruses in patients with a coronavirus infection. Until now, SARS-CoV-2 has been identified as the seventh member of the coronavirus family capable of infecting humans. In the past two decades, humankind has experienced outbreaks triggered by two other extremely infective members of the coronavirus family; the MERS-CoV and the SARS-CoV. According to several investigations, SARS-CoV causes proteinuria and renal impairment or failure. The SARS-CoV was identified in the distal convoluted tubules of the kidney of infected patients. Also, renal dysfunction was observed in numerous cases of MERS-CoV infection. And recently, during the 2019-nCoV pandemic, it was found that the novel coronavirus not only induces acute respiratory distress syndrome (ARDS) but also can induce damages in various organs including the liver, heart, and kidney. The kidney tissue and its cells are targeted massively by the coronaviruses due to the abundant presence of ACE2 and Dpp4 receptors on kidney cells. These receptors are characterized as the main route of coronavirus entry to the victim cells. Renal failure due to massive viral invasion can lead to undesirable complications and enhanced mortality rate, thus more attention should be paid to the pathology of coronaviruses in the kidney. Here, we have provided the most recent knowledge on the coronaviruses (SARS, MERS, and COVID19) pathology and the mechanisms of their impact on the kidney tissue and functions.


Asunto(s)
COVID-19/mortalidad , Infecciones por Coronavirus/mortalidad , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , SARS-CoV-2/patogenicidad , Síndrome Respiratorio Agudo Grave/mortalidad , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Tropismo Viral/genética , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/genética , COVID-19/patología , COVID-19/virología , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Regulación de la Expresión Génica , Humanos , Riñón/metabolismo , Riñón/patología , Riñón/virología , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Unión Proteica , Receptores Virales/genética , Receptores Virales/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Síndrome Respiratorio Agudo Grave/genética , Síndrome Respiratorio Agudo Grave/patología , Síndrome Respiratorio Agudo Grave/virología , Índice de Severidad de la Enfermedad , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Análisis de Supervivencia
8.
Stem Cell Res Ther ; 12(1): 192, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: covidwho-1140512

RESUMEN

Over recent years, mesenchymal stem/stromal cells (MSCs) and their potential biomedical applications have received much attention from the global scientific community in an increasing manner. Firstly, MSCs were successfully isolated from human bone marrow (BM), but in the next steps, they were also extracted from other sources, mostly from the umbilical cord (UC) and adipose tissue (AT). The International Society for Cellular Therapy (ISCT) has suggested minimum criteria to identify and characterize MSCs as follows: plastic adherence, surface expression of CD73, D90, CD105 in the lack of expression of CD14, CD34, CD45, and human leucocyte antigen-DR (HLA-DR), and also the capability to differentiate to multiple cell types including adipocyte, chondrocyte, or osteoblast in vitro depends on culture conditions. However, these distinct properties, including self-renewability, multipotency, and easy accessibility are just one side of the coin; another side is their huge secretome which is comprised of hundreds of mediators, cytokines, and signaling molecules and can effectively modulate the inflammatory responses and control the infiltration process that finally leads to a regulated tissue repair/healing or regeneration process. MSC-mediated immunomodulation is a direct result of a harmonic synergy of MSC-released signaling molecules (i.e., mediators, cytokines, and chemokines), the reaction of immune cells and other target cells to those molecules, and also feedback in the MSC-molecule-target cell axis. These features make MSCs a respectable and eligible therapeutic candidate to be evaluated in immune-mediated disorders, such as graft versus host diseases (GVHD), multiple sclerosis (MS), Crohn's disease (CD), and osteoarthritis (OA), and even in immune-dysregulating infectious diseases such as the novel coronavirus disease 2019 (COVID-19). This paper discussed the therapeutic applications of MSC secretome and its biomedical aspects related to immune-mediated conditions. Sources for MSC extraction, their migration and homing properties, therapeutic molecules released by MSCs, and the pathways and molecular mechanisms possibly involved in the exceptional immunoregulatory competence of MSCs were discussed. Besides, the novel discoveries and recent findings on immunomodulatory plasticity of MSCs, clinical applications, and the methods required for their use as an effective therapeutic option in patients with immune-mediated/immune-dysregulating diseases were highlighted.


Asunto(s)
COVID-19 , Inmunomodulación , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/inmunología , SARS-CoV-2/inmunología , COVID-19/inmunología , COVID-19/terapia , Humanos
9.
Anticancer Agents Med Chem ; 21(16): 2142-2162, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: covidwho-1076370

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) firstly emerged in Wuhan, China at the end of 2019. After going through the experimental process, the virus was named the novel coronavirus (2019-nCoV) by the World Health Organization (WHO) in February 2020 which has created a global pandemic. The coronavirus disease 2019 (COVID-19) infection is challenging the people who are especially suffering from chronic health problems such as asthma, diabetes, and heart disease or immune system deteriorating disorders, including cancers, Alzheimer's, etc. Other predisposing/risk factors consist of smoking and age (elderly people are at higher risk). The 2019-nCoV attacks epithelial cells in all organs, particularly epithelial cells in the lungs, resulting in viral pneumonia. The 2019-nCoV starts its invasion with the attachment and entry into the respiratory tract epithelial cells via Angiotensin-Converting Enzyme 2 (ACE2) receptors on the epithelial cells. The critical problem with 2019-nCoV is its ability in human to human asymptomatic transmission which causes the rapid and hidden spread of the virus among the population. Also, there are several reports of highly variable and tightly case-dependent clinical manifestations caused by SARS-CoV2, which made the virus more enigmatic. The clinical symptoms are varied from common manifestations which occurred in flu and cold, such as cough, fever, body-ache, trembling, and runny nose to severe conditions, like the Acute Respiratory Distress Syndrome (ARDS) or even uncommon/unusual symptoms such as anosmia, skin color change, and stroke. In fact, besides serious injuries in the respiratory system, COVID-19 invades and damages various organs, including the kidney, liver, gastrointestinal, and nervous system. Accordingly, to cut the transmission chain of disease and control the infection spread. One of the major solutions seems to be early detection of the carriers, particularly the asymptomatic people, with sensitive and accurate diagnostic techniques. Moreover, developing novel and appropriate therapeutic approaches will contribute to the suitable management of the pandemic. Therefore, there is an urgent necessity to make comprehensive investigations and study reviews about COVID-19, offering the latest findings of novel therapies, drugs, epidemiology, and routes of virus transmission and pathogenesis. In this review, we discuss new therapeutic outcomes and cover and the most significant aspects of COVID-19, including the epidemiology, biological features, organs failure, and diagnostic techniques.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Prueba de COVID-19/métodos , Tejido Adiposo/virología , COVID-19/epidemiología , COVID-19/etiología , COVID-19/patología , COVID-19/terapia , Femenino , Humanos , Trasplante de Células Madre Mesenquimatosas , Embarazo , Complicaciones Infecciosas del Embarazo/etiología , Complicaciones Infecciosas del Embarazo/virología , Embolia Pulmonar/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA